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ABSTRACT
Models to search for optimal operation rules of complex water resources systems generally represent the physical system in a fixed static form, being
difficult to incorporate changes in water offer, water demand and system structure. This paper presents a decision support procedure that integrates
continuous simulation, artificial neural networks, and optimization to produce decision rules in watershed management for multiple purpose complex
water resources systems. The system uses physical indexes to evaluate the compliance of targets for the different purposes of the system, such as
occurrence of failure (frequency), resilience (duration and capacity of recovery of a state of failure) and vulnerability (severity or magnitude of the
failure). It also introduces a global indicator of the behavior of the system, which combines, with user selected weights, the previous indexes in a
measure of global effectiveness. The methodology was applied to the San Juan River Basin, Argentina, and results show conclusively the usefulness
of simulation in the study of alternatives of water resources systems with multiple uses and the feasibility of using neural networks to encapsulate the
behavior of simulation models. The encapsulated model and parametric operation rules can be included in a dynamic optimization process to search
for optimal operation policies.
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1 Introduction

Numerous studies address the problem of defining optimum
operation rules for reservoir systems with multiple purposes.
(Nalbantis and Koutsoyiannis, 1997; Belaineh et al., 1999; Lund
and Guzmán, 1999; Morel-Seytoux, 1999; Sanchez-Quispe,
1999). However, most studies use fixed management rules in the
search of solutions and cannot adapt to changes that the system
undergoes.

The uncertainty of the availability and demands of water for
different uses is an additional degree of difficulty in operational
decisions. Since future events are not known with certainty,
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the user needs to evaluate the risk of making certain decisions.
To make an exhaustive analysis of operation alternatives under
uncertainty, requires computation of outcome probabilities asso-
ciated to each alternative, for every time horizon. A reliable
estimation of these probabilities needs multiple simulation runs
and the computational time for a large number of alternatives,
makes this problem unapproachable with conventional meth-
ods. For this reason, the analysis of alternatives based on risk is
solved by trial and error, without carrying out a true optimization
process.

This paper presents a decision support system that offers the
manager a dynamic tool to customize the problem and to search
for an optimal management policy. The procedure increases the
capacity to search for solutions by combining simulation and
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optimization. The model allows a trial and error search of alter-
natives based on risk or performs an exhaustive analysis of
alternatives based on certainty.

The method is a combination of simulation of continuous
processes, artificial neural networks (ANNs) and optimization
techniques. The system uses operation rules and restrictions
expressed parametrically, calculates measures of effectiveness
for different uses of water and combines them using relative
weights. This approach generates a novel and effective mathemat-
ical model that uses simulation and optimization simultaneously.
As a result, it is possible to construct a dynamic objective function
that adapts to changing requirements of the users, and finds good
management practices, without modifying the simulation model.
The mathematical model can be easily adapted to account for
system dynamics, such as, changes in water offer and demand,
changes in water use priorities and modifications of the relative
importance of behavior indexes for each use.

The use of ANN techniques in water resources is relatively
new and has been reported by French et al. (1992), Karunanithi
et al. (1994), Hatta et al. (1996), Raman and Sunilkumar (1995),
Zealand et al. (1999), Zhu and Fujita (1994), Hsu et al. (1995)
and Dölling and Varas (2001), among others. However to our
knowledge, the integration of simulation, ANN models, opti-
mization of water resources systems, parametric representation
of parameters and production rules has not been reported.

2 Search process of the optimal operation alternative

The decision support method implemented by SARH-2000
(Dölling, 2001), uses simulation and optimization to search for

Figure 1 Process to search for solutions.

an optimal solution within a space of feasible states that comply
with the transition rules between states. The solution of the prob-
lem can be the final state or the trajectory to get to the solution
(Gerez and Grijalva, 1988). Figure 1 shows a block diagram with
the structure of the search process.

The state space in a simulation problem is usually discontin-
uous and finding the optimal solution is not always possible. On
the other hand, the state space in optimization models is defined
by continuous and derivable functions. This fact constitutes a
significant conceptual difference in the search for solutions in
both approaches. Nonetheless, they can be combined in a single
search method, when simulation results are encapsulated using
an ANN. Since this model is continuous and derivable it can be
introduced in a nonlinear optimization scheme.

2.1 Simulation

To simulate the behavior of a water resource system, it is nec-
essary to formulate an operational model of the physical system
and to define the elements, the relations between elements and the
inputs. The process needs the hydrological data base to character-
ize the problem. This information can also be used if necessary,
to formulate a stream-flow forecasting model. Additional data for
the simulation model are the attributes and relationships between
objects and variables, the interaction between variables, the mea-
sures of effectiveness of the behavior of the system, the set of
operation rules that define the restrictions of the space of feasi-
ble states and the operation rules of the control elements of the
system (reservoirs, gates, pumps).

The simulation analysis evaluates the performance of an oper-
ation alternative using a series of historic or synthetic monthly
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flow volumes for the period of study. The decision support model
compares system behavior under different operation rules and
helps the manager to select those rules that behave better or to
formulate operation rules at the planning level. In this study,
operation policies were defined using physical output measures,
such as the frequency or probability of failure, the probability
of recovery from states of failure or resiliency and the magni-
tude of deficits or vulnerability for each water use (Loucks and
Sigvaldason, 1982; Azevedo et al., 2000; Cai et al., 2002).

The first step in the simulation process is to define the search
space of the control elements by setting upper and lower limits for
the parameters. Next, random values of parameters are generated
to build a space of operation alternatives large enough to obtain
a complete representation of the response surface.

2.2 Encapsulation of simulation results

Since simulation does not produce an optimal alternative and
the simulation model is too complex to include in the objective
function of an optimization model, we propose to encapsulate
simulation results using an ANN model, capable of reproducing
a set of results of the behavior indices as a function of the input
variables which characterize a given alternative. Some efforts
to use encapsulation on other fields have been reported (Dibike
et al., 1999)

An ANN is a mathematical model which has a highly con-
nected structure similar to brain cells. It consists of a number
of neurons arranged in different layers, an input layer, an output
layer and one or more hidden layers. The input neurons receive
and process the input signals and send an output signal to other
neurons in the network. Each neuron can be connected to the other
neurons and has an activation function and a threshold function,
which can be linear or nonlinear continuous functions. The sig-
nal passing through a neuron is transformed by weights which
modify the functions and thus the output signal that reaches the
following neuron. Modifying the weights for all neurons in the
network changes the output. Once the architecture of the network
is defined, weights are calculated so as to represent the desired
output through a learning process where the ANN is trained to
obtain the expected results. Information available is used to define
a learning or training data set and a validation data set (Rumelhart
et al., 1994).

2.3 Optimization

The optimization model includes an objective function that min-
imizes the global effectiveness of the system (MEGS) which is
a linear combination of behavior indices of failure calculated for
every water use, subject to restrictions imposed on parameters by
the operation rules. This global indicator is defined as follows:

MEGS =
5∑

i=1

b(i) ∗
3∑

j=1

p(i, j) ∗ I (i, j)

Imax(i, j)
(1)

where
i = type of water use of the system: (1) irrigation; (2) energy;

(3) flood control ; (4) ponding Control; (5) recreation,

j = behavior index: (1) occurrence of failure; (2)
complement of resilience; (3) vulnerability,

b(i) = relative importance assigned to water use (i) by the
user. (policy decision),

p(i, j) = relative importance assigned by the user to the
behavior index (j ) of water use (i)

I (i, j) = value of the behavior index (j ) of water use (i)
Imax(i, j) = maximumValue (reached in the 3.500 simulations)

of the behavior index (j ) of water use (i), used for
scaling purposes.

The behavior indices measure the performance of the system
with respect to water deficits and the ability to recover from states
of failure. Occurrence of failure is equal to the probability of hav-
ing a water shortage for a certain use, and it was calculated as the
ratio of the number of failures and the total period in the simu-
lation. Vulnerability was defined as the magnitude of the largest
deficit or failure for a particular use of water in the simulation
period. Resilience expresses the capacity of the system to recover
from a state of failure. The objective function includes the com-
plement of resilience which is the probability that the system
does not recover from a state of failure. It is calculated as the
probability that the system is in state of failure in the following
period given that it is currently in a state of failure.

Constraints of the optimization model are of two types. Some
are related to physical characteristics of the proposed or exist-
ing structures, such as maximum storage volumes of reservoirs,
dead or minimum storages of reservoirs, maximum discharge of
the reservoirs, maximum capacity of pumping wells, capacity
of water distribution channels. Other constraints are operational
and these are defined by the range of feasible states of the con-
trol elements, such as water demands in each period for different
uses, energy generation, size of flooded areas, pumped volumes,
water volumes derived for irrigation, drinking water demands.

3 Application to the San Juan River Basin

We applied the proposed model to analyze management alterna-
tives for the San Juan River Basin in Argentina (Dölling, 2001).
Water resources demands include potable and industrial water,
irrigation, hydroelectricity, flood control, recreation and surface
ponding control (Figs 2 and 3). The water resources system
includes three reservoirs, three hydroelectric power plants, a
diversion dam, three irrigation areas, San Juan potable water,
two aquifers and two pumping systems to control aquifer water
tables.

4 Encapsulating the simulation results in an artificial
neural network

Dölling and Varas (2000) formulated a continuous simulation
model to represent the San Juan River Basin system using
Extend© (1990) (Fig. 4). This model calculates behavior indexes
for each month for five water demands of the system (irrigation,
hydropower, flood control, ponding control and recreation).



4 Dölling and Varas,

River

Ullúm

Aquifer
Zonda

 River
Sector 1

SystemPlant
Hydroelectric Pumping

Ppal. chanel
Water

Diversor

I.de la Roza

chanel 1, 2

 chanel 3
Pumping
System OSSE

IrrigatedIrrigated
 Area 1

y 2
Area 3

Pumping
Systme

Aquifer
 Tulúm

drainage

drainage

 River

Catchment area
San Juan River

Reservoir

 Caracoles

Plant
Hydroelectric

Plants
Hyidroelectric

 River
Sector 2

 Tulúm Valley

Ullum and
Zonda Valley

San Juan river
Catchment area

 Putna Negra
Reservoir

Reservoir

Figure 2 San Juan River Basin diagram.

The algorithm to calculate the behavior index for each use and
month is summarized in Fig. 5.

Overall performance of the system from the beginning of the
simulation period to the current month was measured by the
probability of having a failure to provide the required water for
each use (occurrence of failure), the capacity of the system to
recover from a state of failure (resilience) and the maximum
deficit (vulnerability). The algorithm to calculate the measures
of performance of the system for each water use is presented in
Fig. 6.

The simulation model produces the indices of behavior for
each month and calculates for each period the behavior index
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 Name Reservoir capacity Power Generation/year
(Hm3) (Kw) (millons  Kwh)

El Tambolar 600 70000 330
Caracoles 575 123400 545
Punta Negra 500 76000 325
Ullum I-II 43000 235
Quebrada delúm 440 47000 172
Totales 2115 359400 1607

Item Value Unit
Catchment Area 20,000 Km2

San Juan River mean flow 70 m3/seg
Total Reservoir Capacity 1,500 Hm 3

Nominal Power (all plants) 24640
0

Kva
Distribution Capacity 82.5 m3/seg
Total irrigation area 70,000 Has
 Aquifer capacity 68,000 Hm3

Pumping system capacity 25 m
3/seg

El Tambolar

Figure 3 Physical characteristics of San Juan River system.

for occurrence of failure, vulnerability and the complement of
resilience for each water use. Thus a matrix of behavior indices
for each water use and performance measure was obtained for
each period. A global measure of system behavior (MEGS) for
the current month is calculated using Eq. (1) with relative weights
provided by the user.

The model simulated 3.500 randomly generated management
scenarios, to represent the range of the operational parameters
of the five control elements. These controls represent the water
volumes released by the reservoirs (Caracoles, Punta Negra and
Ullum), the water derived for irrigation at Partidor San Emil-
iano and the volume of water pumped by a group of wells in the
Tulúm valley. The operation scenarios were defined by expressing
the operation controls parametrically. The simulation runs give
measures of effectiveness of the system (occurrence of failure,
complement of resilience and vulnerability) for each purpose and
management scenario, following the algorithms of Figs 5 and 6.
Results were used to train and validate a neural network capa-
ble of encapsulating the behavior of the system under different
situations.

It was found that the ANN captures the structure of the sim-
ulation model and predicts accurately the 15 behavior indexes,
that is to say, the index of occurrence of failure, resilience and
vulnerability for each water use. We used the SNNS software
(Zell et al., 1995) to train, validate and test the neural network.
We obtained a good predictive behavior using a feed-forward
5–10–10–15ANN (5 input neurons, 2 layers of 10 hidden neurons
and 15 output neurons), trained by back-propagation momentum
(Fig. 7). We initialized the network with random values between
−1 and 1 and studied the convergence of the back-propagation
method for different rates of learning and different coefficients
of momentum. Finally, we adopted values equal to 0.5 and 0.2
for the mentioned parameters, respectively.

We used 3.500 input–output duples: 2.000 for training 1.000
for validation and 500 for testing the network. Each duple con-
sisted of 5 input variables and 15 output variables. The 5 input
variables (X1, . . . , X5) are the parameters of the operation rules
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Figure 4 Modular structure of simulation model.

for the control elements of the system and the 15 output variables
are the behavior indexes for each water use.

The reservoir parameters of Caracoles (X2), Punta Negra (X4)
and Ullúm (X3) have a range [−0.3 to +0.3]. A zero value (0)

BEHAVIOR INDICES

Irrigation (IR)

IR = Volume of Irrigation Demand – Volume of available water for irrigation

Energy (IE)

Variable definition

Var1 = Volume of water demand for irrigation

Var2 = Volume demand of Caracoles Reservoir

Var3 = Volume delivered by Ullum Reservoir

Var4 = Volume delivered by Caracoles Reservoir

Var5 = Volume of water demand of Punta Negra Reservoir

Var6 = Volume of water delivered by Punta Negra Reservoir

If (Var1-Var3 < 0 AND Var2-Var4 < 0) then Result1 = 0

If ( Var1-Var3 < 0 AND Var2-Var4 >= 0) then Result1 = Var2-Var4

If ( Var1-Var3 >= 0 AND Var2-Var4 < 0) then Result1 = Var1-Var3

If ( Var1-Var3 >= 0 AND Var2-Var4 >= 0) then Result1 = (Var1-Var3) + (Var2-Var4)

If (Var5-Var6 < 0 ) then Result2 = 0

If ( Var5-Var6 >= 0) then Result2 = Var5-Var6

IE = Result1 + Result2

Flood Control (IFC)

IFC = Volume delivered to the River – Maximum admissible volume

Ponding Control (IP)
IP = Flooded surface – Maximum admissible flooded surface

Recreation (IREC)
Var1 = Ullum Reservoir water level

If( Month > 9 OR Month < 4 AND Var1 < 765) then IREC = 765 – Var1

Else IREC = 0

Figure 5 Definition of behavior indices.

indicates that the reservoir satisfies exactly the volume of water
demanded by the system. Positive values (+) represent the pro-
portion of water that the reservoir discharges in excess of total
demand. Negative values correspond to situations in which the
reservoir delivers less water than the volume demanded.

The water discharged by Ullúm reservoir flows to Ignacio de
la Roza Dike, which can discharge water to the main irrigation
channel or to the river. The water derived to the main channel
goes to the Partidor San Emiliano and is distributed to the three
irrigation channels or discharged to the river if necessary.

The operation rules for water distribution were parametrized
for the combined operation of Ignacio de la Roza Dike–Partidor
San Emiliano for situations when the water discharged by Ullum
reservoir exceeds the irrigation water requirement. When the vol-
ume of water discharged by Ullum is equal or less than the volume
required for irrigation, the combined Dike–Partidor discharges
all available water to irrigation. The parameter of the combined
Dike–Partidor (X1) has a range of [−0.5 to +0.5] and represents
the volume of water derived into the river. A null value implies
that the total volume of water exceeding the irrigation require-
ment is derived to the river. Positive values represent situations in
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PERFORMANCE INDICES

Step 1

(a) Calculate the state of the system (use i, time t)
Failure state (i,t) = 1 if failure
Failure state (i,t) = 0 if success

(b) Calculate number of failures between time t = 0 and time t = N (actual or current time)
nfailures(i, N) = sum( Failures states (i, t) for t = 0 to N )

(c) Calculate probability that a failure state continues for next period

P(X, i ) = Prob (M | F) = (sum( state (failure(i)t | Failure(i)t−1) for time t = 0 to time t = N))/ n failures(i, N)

Step 2

(d) Calculate successes
Success ( i, t) = 1 if target is met
Success ( i, t) = 0 if target is not fulfilled

(e) Calculate the number of success states between time t = 0 and time t = N (actual or current time)
nsuccess ( i, t) = n failures(i, N) - N

(f) Calculate probability that a success state continues for next period

P(Y, i) = Prob (M | S) = (sum((success(i,t) | success(i,t-1) for time t = 0 to time t = N))/ nsuccess(i, N)

Step 3

(g) Calculates vulnerability (i, t) as the maximum magnitude of deficit (i, t ) for time t = 0 to time t = N
(h) Calculate the probability or occurrence of failure of period N

P(Z, i) = n failures( i, N) / N

(i) Calculate the complement of Resilience (CR)

CR(i) = 1- [P(X,i)*P(Z,i)/(P(X,i)*P(Z,i) + P(Y,i)*(1-P(Z,i))]

Figure 6 Algorithm to calculate performance indices.

                                                            

                                                                  

Figure 7 ANN to encapsulate simulation model (notation in Table 1).

which more water is derived to the river causing deficits in irriga-
tion. Negative values represent situations in which the irrigation
sector receives more water than the volume demanded.

Water table depths in the Zonda and Túlum aquifers are very
shallow and ponding control is urgently needed. The parameter of

the pumping system (X5) varies between 0 and 100. A zero value
indicates that no ponding control is accomplished in the valley,
that is, the pumping system is inactive. A value (100) implies that
100% ponding control is required in the valley. In this case, the
valley has a maximum of 1000 Has with a water table depth less
than 1 m.

The 15 output variables of the model are the values of the three
behavior indexes for each of the five water uses. All values in the
duples were scaled to −0.7 and +0.7 to homogenize the magni-
tudes of the different variables. The sigmoid activation function
was used at output of each neuron, to be able to extrapolate out-
put values larger than the ones used in the training process of the
network. The value of the behavior index (j ) for each water use
(i) included in the objective function is estimated using the ANN
model as a function of the input control variables (X1, . . ., X5).

The ANN model can be summarized in the following set of
equations:

Output of input layer: Xi for i = 1, . . . , 5
Output of hidden layer 1:

yj =
(

1 + exp

(
−

(
a0j +

5∑
i=1

aijXi

)))−1

j = 1, . . . , 10

(2)
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Output of hidden layer 2:

yk =

1 + exp


−


b0k +

10∑
j=1

bjkyj










−1

k = 1, . . . , 10 (3)

Result of output layer:

ym = Im =
(

1 + exp

(
−

(
c0m +

10∑
k=1

ckmyk

)))−1

m = 1, . . . , 15 (4)

The sum of square errors (SSE) in the test pattern indicates
that the network is capable of generalization after 50.000 training
cycles. In general, theANN and the simulation model give similar
values for the behavior indexes, as shown by Figs 8 and 9. The
ANN model for the 500 test examples gave acceptable values of
the absolute scaled error. The maximum average value of this
error is 6.18% with a standard deviation of 8.12% (Table 1).

The global effectiveness index (MEGS) represents the overall
behavior of the system. The optimization model searches for a
feasible administration policy that produces the smallest value of
MEGS in a hyperspace of five dimensions, each corresponding

Purpose weight Effectiveness Measure weight
Vulnerability 1
Failure frecuency 0

Irrigation 0.5

Resilency 0
Vulnerability 0.1
Failure frecuency 0.4

Energy 0.3

Resilency 0.5
Vulnerability 0
Failure frecuency 0.1

Aquifer
control

0.1

Resilency 0.9
Vulnerability 0.5
Failure frecuency 0.1

Flood
control

0.05

Resilency 0.4
Vulnerability 0
Failure frecuency 0.5

Recreation 0.05

Resilency 0.5

M.E.G.S.   Dispersion
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Figure 8 Comparison of MEGS calculated with the simulation model and the ANN model (Example 1).

Purpose weight Effectiveness Measure weight

Vulnerability 1
Failure frecuency 0

Irrigation 0.5

Resilency 0
Vulnerability 0.1
Failure frecuency 0.4

Energy 0.3
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Failure frecuency 0

Aquifer
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Failure frecuency 0

Recreation 0.05
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Figure 9 Comparison of MEGS calculated using the ANN model and the simulation model in Extend© (Example 2).

to one of the operation parameters that define the management
policies of the system. Behavior indexes for different purposes
were scaled between 0 and 1 to combine them.

Figures 8 and 9 and Table 2 compare MEGS values calculated
with the ANN model and the ones calculated with the Extend©

simulation model for the 3.500 examples for different weight
configurations. As shown in the diagrams, the ANN model cap-
tures the global behavior of the system acceptably, although there
is a tendency to underestimate the MEGS parameter for low
values and overestimate for high values for this set of priori-
ties. Other configurations of relative weights and effectiveness
measures gave similar values of error and dispersion.

Table 2 shows that deviations and errors are small and adequate
to the purposes of the method, so the ANN model can be used to
search for small MEGS values using nonlinear optimization.

Once theANN model was trained and validated, the model was
introduced as part of the mathematical structure of the objective
function, or equation to calculate the MEGS index. The inclu-
sion of a complex simulation model in the objective function is
impossible, due to the large amount of calculations. However,
the mathematical representation of the ANN that encapsulates
simulation results is simple and can be included in the objective
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Table 1 Absolute percent errors in scale 0.7 of the ANN model for 500 test examples

Purpose Index Maximum Minimum Average Standard
deviation

Irrigation Vulnerability (VR) 15.170 0.001 1.363 1.524
Probability of 19.973 0.014 3.339 2.852

failure (OFR)
Complement of 18.159 0.004 3.379 2.675

resilience (RR)

Energy Vulnerability (VE) 15.086 0.003 3.613 2.541
Probability of 16.167 0.074 3.565 2.804

failure (OFE)
Complement of 22.765 0.006 3.721 3.304

resilience (RE)

Ponding control Vulnerability (Van) 6.426 0 1.322 1.295
Probability of 16.661 0 3.076 2.649

failure (OFAn)
Complement of 19.323 0 4.375 3.131

resilience (RAn)

Flood control Vulnerability (VCre) 38.879 0 6.177 8.117
Probability of 24.729 0 3.232 4.155

failure (OFCre)
Complement of 31.209 0 4.496 6.265

resilience (Rcre)

Recreation Vulnerability (Vrec) 10.253 0 1.493 1.317
Probability of 10.050 0 2.759 2.024

failure (OFRec)
Complement of 10.272 0 2.979 2.369

resilience (RRec)

Table 2 Errors for Examples 1 and 2

Example Item MEGS Error (%) Difference Relative error
(% of max.)

1 Maximum 0.73 12.3 0.07 9.8
Minimum 0.46 −16.5 −0.08 −10.5

Average 0.61 1.3 0.01 1.01

Standard deviation 0.04 5.1 0.03 4.22

2 Maximum 0.63 12.8 0.07 11.9
Minimum 0.43 −15.9 −0.07 −11.44

Average 0.54 1.13 0.01 0.95

Standard deviation 0.03 5.63 0.03 4.89

function (replacing variable I (i, j)). The resulting equation is
shown in Fig. 10.

Next, the search of the best operation alternative was formu-
lated as a nonlinear optimization problem. The best management
alternative is that set of operation parameters that minimize the
value of MEGS for the planning period. The search is restricted to
the range of feasible solutions. SARH-2000 carries out this search
in a simple form through interfaces developed in Visual Basic,
using the GRG2 algorithm for the Newton conjugate gradient
method for an n-dimensional space (Lasdon et al., 1978; Lasdon
and Waren, 1979). Figure 11 shows the evolution of MEGS index
for a period of 323 months. The legend shows the value of the
index at the end of the simulation period. This value gives the

user an indication of the overall behavior of the operation policy
for the total period of analysis.

The potential of the ANN is evident when comparing the min-
imum value of MEGS given by the ANN model (MEGS = 0.13)
and the one given by the Extend© simulation model with the same
operation parameters (MEGS = 0.09). If a maximization prob-
lem with the same objective function and restrictions is processed,
the optimization model gives a maximum value of MEGS = 0.29
at the end of the period of analysis, similar to the one given by
the Extend© model (MEGS = 0.26).

These results show that the ANN model has encapsulated cor-
rectly the space of operational results simulated with the Extend
model and that it is capable of producing good results in situations
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MEGS = ∑5
i=1 bi

∑3
j=1 pi,j ·

(
σ
(∑10

m=1 w3,4,m(i.j+(i−1).(j−1)).σ
(∑10

n=1 w2,3,n,m.σ
(∑5

p=1 w1,2,p,n.Xp

)))
Imaxi,j

)
Nomenclature
σ(y) = 1

1+e−y

σ = sigmoid function
y = argument of sigmoid function
p = input neuron index [1 : 5]
n = index of neurons of hidden layer 1 [1 : 10]
m = index of neurons of hidden layer 2 [1 : 10]
Xp = input variable of input layer p

l = i · j + (i − 1) · (j − 1) = index of output neurons [1 : 15]
i = water use [1 : 5]
j = failure index [1 : 3]
w3,4,m,(i.j+(i−1).(j−1)) = weights for output of second hidden layer
w2,3,n,m = weights for output of first hidden layer
w1,2,p,n = ±weights for output of input layer
bi = relative weight for water use i

pij = relative weight for index of failure j of water use i

Imaxi,j
= maximum observed value for 3500 simulations of index of failure j of water use i

Figure 10 MEGS equation using the ANN formulation.
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Figure 11 Operation alternatives for 323 months.

not included in the learning duples. The inclusion of the ANN
model in the nonlinear optimization scheme produces an optimal
operational alternative in a few seconds, result which cannot be
obtained using conventional simulation.

5 Conclusions

This model offers a dynamic tool to represent a water resource
system and to search for optimal management policies. Key con-
cepts are simulation of continuous processes, ANNs, optimiza-
tion methods, use of operation rules expressed parametrically,
calculation of measures of effectiveness for different uses of water

and relative weighting of these measures. Measures of effective-
ness can also be related to economic, physical or mixed targets,
according to what the user desires. The combined use of sim-
ulation and optimization was achieved by the use of ANNs to
encapsulate the results of simulation in a simple nonlinear model,
which can be incorporated in the structure of the optimization
model to search for good administration practices in the space of
feasible policies. These policies can easily be constructed when
operation rules are expressed in parametric form.

The use of occurrence of failure indicators gives the manager
an element to evaluate the risk of an operation rule. The indexes
of resilience and the probability of failure incorporate knowledge
on the reaction capacity of the system after failure. This infor-
mation is valuable for deciding which operation policies fulfill
management objectives.

ANNs capture the behavior of the system under different oper-
ation scenarios and have the capacity to learn several concepts
simultaneously, giving the possibility of encapsulating the results
of simulation. Since neural networks are continuous and deriv-
able functions they can be used in the objective function of the
optimization model. Neural networks trained with a large number
of simulation examples, have a good generalization potential and
are able to recognize new situations different from the training
examples.

Customizing the relative weight of each purpose indepen-
dently allows the user to include the dynamics of the competition
between water uses, without modifying the simulation model
and the neural network. Thus, the decision support system can
easily incorporate structural modifications, changes in operation
rules and failure definitions without modifying methodological
aspects.
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